If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+400=0
a = -4.9; b = 0; c = +400;
Δ = b2-4ac
Δ = 02-4·(-4.9)·400
Δ = 7840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7840}=\sqrt{16*490}=\sqrt{16}*\sqrt{490}=4\sqrt{490}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{490}}{2*-4.9}=\frac{0-4\sqrt{490}}{-9.8} =-\frac{4\sqrt{490}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{490}}{2*-4.9}=\frac{0+4\sqrt{490}}{-9.8} =\frac{4\sqrt{490}}{-9.8} $
| 6-2x=10x+30 | | -9x+46=-2(x-20) | | 2(b+6)=14 | | 20-a=25 | | -2y-5=-1 | | x-11=166-(2x) | | 16-3w=13 | | 52=2x+3+3x+x+1 | | 4(x-2)=-18 | | 10w=4w+54 | | 9x-12x3x+27=0 | | 9x-12•3x+27=0 | | 6x+46=2x+30 | | 4x=15-2 | | 3n+5(5n-7)=189 | | u=10-4u | | 6x+2/3=-20-5x | | 9=k+3 | | -8(c-2)=-8 | | 3x-5=7x=11 | | 15+b=0.4 | | 9v=7v+18 | | 1/3(2x+8)=-2x | | s+5.4=3.6 | | 3/4=u-2/10 | | 1/3(2x+8=-2x | | 3(m-4=21 | | 10(x=1)=110 | | 15=2w+w | | 0=x^2+3x-22500 | | 83-w=250 | | 11-3y=6 |